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The propagation of longitudinal elastic waves in composite materials, consisting of a polymer matrix reinforced by continuous 
fibres in one direction, is considered. The reinforcing fibres have piezoelectric properties and have a thin current-conducting 
coating ("shunted fibres"). The scattering of electric energy in such materials leads to dispersion of the velocity of the elastic 
waves and to their attenuation. The effective-field method is used to determine the macroscopic electroelastic constants of such 
composites. These constants enable one to obtain, in explicit form, the frequency dependence of the real and imaginary parts 
of the wave number of a longitudinal wave, propagating along the reinforcement direction, and also their dependence on the 
physical and geometrical characteristics of the components. © 2000 Elsevier Science Ltd. All rights reserved. 

To damp mechanical vibrations in structures a method has recently become widely used [1-3] in which 
piezoelectric elements are employed, which are able to convert mechanical energy into electrical energy 
and vice versa. One such possibility is based on the use of fibres of PZT piezoelectric ceramics with a 
thin electrically conducting coating ("shunted fibres") as the reinforcing elements in a composite material. 
This coating forms a passive electrical circuit, which dissipates the electrical energy, and this damps 
the elastic vibrations in these materials. A simple one-dimensional model (the "mixture rule") was 
proposed in [2] for a quantitative description of this effect. Below we use a refined scheme (the effective- 
field method [4, 5]), which enables the effect of the volume nature of the stress--strain state in the material 
and the electroelastic coupling on the expression for the effective electroelastic constants to be taken 
into account. 

1. I N T E G R A L  R E P R E S E N T A T I O N S  O F  T H E  E L E C T R O E L A S T I C  
F I E L D S  I N  C O M P O S I T E S  R E I N F O R C E D  W I T H  F I B R E S  

AND THE A V E R A G I N G  P R O C E D U R E  

Consider a uniform piezoelectric material, maintained under isothermal conditions. The linear 
constitutive relations for such a material have the form 

T + E i k E  k (1.1) (~ij -~ CqklEkl -- e i j kEk ,  Di  = eiklE,l  

Here o and e are the stress and strain tensors, E and D are the electric field and induction vectors 
respectively, C = C E is the elastic moduli tensor for a fixed vector E, e = e ~ is the permittivity tensor, 
e is the piezoelectric constant tensor, characterizing the coupled electroelastic effects, and the superscript 
T denotes the operation of transposition. 

Relations (1.1) can be conveniently written in the following short form 

J=LF, J=~, L=e C -eel, F=]E (1.2) 

where the "matrix" L must be regarded as a linear operator, which converts the tensor-vector pair [o, 
D] into the analogous pair [e, E] and which has symmetry of the electroelastic constants. 

The inverse relations to (1.1) can be written in the form 
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S= S ° =(C +ee- ler )  -j, rl = rl a = (e + er C-le) -I, d = See -I = C-lerl 

(1.3) 

We will now consider a composite material consisting of a uniform matrix with an electroelastic 
characteristics operator L °, reinforced with a parallel system of continuous circular cylindrical fibres 
with electroelastic characteristics L = L ° + L' .  The operator L can be variable inside each fibre. We 
will denote the characteristic function of the region V, occupied by the fibres, by V(x), and the strain 
tensor by t(x), and we will represent the electric field vector E(x) as follows [5]: 

F(x) = F ° (x) + ~ P(x - x ' )Q(x ')dx '  ( 1.4) 

Q(x) = L I (x)F(x)V(x) ,  L t (x) = L ( x ) -  L ° 

Here  F ° = [e °, E °] are the external elastic and electric fields applied to the medium, which we will 
henceforth assume to be uniform. The kernel of the integral operator in (1.4) will be expressed in terms 
of the second derivatives of Green's function G(x) for the common theory of electroelasticity for a 
medium with properties L ° [5] 

1 
P(x) = VG(x)V, G(x) = (-~n)  3 ~ G(k)eik'xdx (1.5) 

IGik(k) -Ti (k)  
G(k) =[Tk(k) g(k) 

0 0 = eOkkikk = eiklkkkl , A i t ( k  ) = Coktkjk~, h i (k  ) ~L(k) 

Like (1.4), the stress field and the electric displacement field J = [c, D] can be represented in the 
same way as (1.4) 

J(x)  = jo (x) + ~ R(x - x')M°Q(x')dx ' (1.6) 

J° (x )  = L°F°(x), R(x) = -L°S(x ) -  L°P(x)L ° 

where 8(x) is the Direc delta function. 
We will choose the system of coordinates in such a way that the x 3 axis coincides with the direction 

of the reinforcement. Since the perturbation of the electroelastic characteristics L and also the elastic 
and electric fields inside the fibres (in the case of constant external fields F °) depend only on the xl and 
x2 coordinates, integral representations (1.4) and (1.6) take the form 

F(.~) = F ° + ~ P(.~ - .~')Q(~')d~', £ = .~(x t , x 2) 

j (£ )  = j0 + ] 1~(.~- ~')M°Q(~')aS? ' (1.7) 
A 

The kernel P(k) is related to the function P(x) in (1.5) by the equation 

P(xI,x2) = T P ( X l , X 2 , x 3 ) d x 3  (1.8) 
- o o  

^ Hence it follows that the symbol of the operator P (the Fourier transformation P(/~) of the function 
P(k)) is given by the expression 

fJ(k) = kG(k)k Ik3__ 0, k = k(kl ,k  2) (1.9) 

where the function G(k) is defined in (1.5). 
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Suppose now that the set of fibres is random and uniformly distributed in space. Then the problem 
of averaging consists of determining the electroelastic fields at an arbitrary point x of the composite 
material, averaged over the ensemble of samples of this set. Starting from relations (1.7), we can write 
the expressions for these averages in the form 

(F(~)) = F ° + j" F'(.~ - ~')(Q(~'))d~' (1.10) 

(j(~)) = j0 + ~ I~(.Y - ~')M°(Q(~'))d~ ' 

Here we have taken into account the fact thatP(x) and R(x) are deterministic functions. If the set 
of fibres is spatially uniform, F(x), J(x) and Q(x) are uniform random functions, which possess the 
property of ergodicity. Therefore, for example, the mean (Q(x)) is a constant quantity, the value of which 
can be found from a typical fixed sample of the function Q(x) 

(Q) = iim I f  Q(~)a~ (1.11) 
s-,~ S~s 

Here S is a region in the xl, x2 plane, which, in the limit, occupies the whole plane. We substitute the 
expression for Q(x) from (1.1) here and, taking into account the fact that, in view of the linearity of 
the problem, the function F(x) can be represented in the form 

F(X)=A(~)F °, A(.~) = A(~) t.t(~) (1.12) 
v(£) X(,v) 

we obtain 

(Q) = noQ F°, Q = (Qs), Qs = J'Lt(£)A(x) dS? (1.13) 
S 

Here no is the numerical concentration of the fibres, the integral Qs is taken over the cross-section 
S of each fibre, and the average (Q~) is calculated over the ensemble distribution of the operators Q~. 

Henceforth we will assume that the mean deformation of the composite and the mean electric-field 
strength are fixed by the conditions of infinity, do not depend on the properties and concentration of 
the fibres and are identical with the constant external fields e ° and wE ~ ((/7) = F0). In the same way as 
for the u2aconnj~cted elastic problem [4], it can be shown that the action of the integral operators with 
kernels P and R on the constants is given by the equations 

S/3(.~ _ .~')(Q)d'k-' = O, ] I~(.~ - ~')M ° (Q)d~" = (Q) 

Hence, also from (1.10) and (1.13) we obtain the relations 

(1.14) 

(J)=L*(F),  L" = L  ° +n0Q (1.15) 

where L* is the electroelastic characteristics operator of the composite material. 
Hence, the problem of averaging is equivalent to the problem of determining the effective 

electroelastic constants of the composite L* and reduces to constructing the operator Q, defined in 
(1.13). Here, to construct this operator, we use one of the self-consistent schemes (the effective-field 
method [4, 5]), based on solving the electroelastic problem for one isolated fibre in a homogeneous 
medium. 

2. THE E F F E C T I V E  FIELD M E T H O D  

In accordance with the main hypothesis of the effective-field method, we will assume that each fibre 
in the composite behaves as an isolated fibre in a homogeneous medium with the properties of the matrix 
L °, and the presence of the surrounding fibres is taken into account using effective external fields 

, , , 0 , F = [e , E ], which act on this fibre and which are not identical with F ° = [e,  E°]. The fields e and 
E* are assumed to be constant and the same for all the fibres. 

Using this hypothesis, we can represent the function Q(x) in the form 
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Q(x) = L l (Y)A°(~)F*~(.2) (2.1) 

where f~(x) is a characteristic function of the region in the x b x: plane occupied by the cross-section of 
the fibres, while the operator A°(x) is found from the solution of the problem for a single fibre in a 
medium with the properties of the matrix L ° when acted upon by constant fields e* and E*. 

In turn, the local external fields F* = [~*, E*] at the point x, belonging to an arbitrary fibre (x s f2), 
are represented in the form 

F* (.2) = F ° + ~ P(2 - ~')L ~ (Y')A ° (~')F*f2(~, Y')a~' (2.2) 

The function f2(x, x) is defined by the relation 

~(~,.2')  = Z ~ i (Y ' ) ,  .7 ~ ~2 k (2.3) 
i.¢ k 

where ~i(x) is a characteristic function of the region occupied by the cross-section of the ith 
fibre. 

We will average relation (2.2) with the condition x e f), assuming that the properties of the fibres 
are statistically independent of their position in space. As a result we obtain 

Here we have put 

(F* (.2) 1 .~) = F ° + (n o I P(x - .2')LAW( -2 - .2')d~')F* (2.4) 

L A = LI(.2)A°(.2)d2 , q'(.~-.2')= (~(~)) 

where (.Ix) denotes averaging with the condition x- ~ f2. It follows from the definition of the function 
f~(x ,x)  that T(x) is a continuous function and q~(0) = 0, Ue(x) ~ 1 when Ix I ~ ~. Henceforth we will 
assume tha t the  cross-sections of the fibres are distributed isotropically in the xb x2 plane. In this case 

+(x)  = + ( I x l ) .  
By identifying the average (F*(x)Ix)  with the effective field F* for each inclusion, we obtain from 

(2.4) 

F* = DF °, D = (I - n0P°L A)-I, pO = ~ P(.2)[1 - W(Y)]d.2 (2.6) 

Here the operator pO is independent of the specific form of the function q~(Ix-I), and in the case of 

(2.7) 

an isotropic matrix with Lam6 constants k0, go and permittivity e0, is defined by the expressions 

p0 = ~°kt 0 
p O 

= plOoijOkl "~ ~ PO(OikOlj "1" OilOkj -- OijOkl ) Jr" 

+ 1 (pO _ plo)(oikmlmj + O/kmlmi + Oitmkmi + O/lmkmi ) 

p,O n - x  0 ~'0 +11o 0 _  I 0 
= , n = 1, 2; ×o = - - ,  Pik -- - -  O i j  = ~ i /  - -  mira/ 

4go ~'o + 21-to 2e ° ik, . . 

where mi are the components of the unit vector parallel to the fibres. 
Using relations (2.6), we can write the following expression for the average of the function 

Q(x) (2.1) 

(Q) = noQ~ ), Q = LAD (2.8) 
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.From this and from (1.14) we obtain the following expression for the effective electroelastic 
characteristics operator 

L* = L ° + n0LAD (2.9) 

3. A C O M P O S I T E  R E I N F O R C E D  W I T H  S H U N T E D  F I B R E S  

We will assume that each fibre in the composite material consists of a core of radius a of piezoelectric 
ceramics, surrounded by a current-conducting shell (a shunt) with external radius b. We will assume 
the piezoelectric ceramics to be a transversally isotropic material with an axis of symmetry of the 
properties coinciding with the geometrical axis of the fibre. The external shell, like the matrix, is assumed 
to be isotropic. 

Suppose the macroscopic loading of the composite reduces to a uniform deformation along the 
reinforcement direction (~2) and an electric field strength (E2). The general method of solving the problem 
for a single isolated stratified non-uniform fibre, discussed for the elastic problem in [6], can also be used 
here for the connected electroelastic problem. However, in the case considered here of a fibre with a 
single coating and an axisymmetrical stress-strain state of the medium with the fibre, the solution of this 
problem is easier to obtain directly. Here the operator A°(x -) in (2.1) can be represented in the form 

AO(.~) = A(Z-) h(~) (3.1) 
t g 

Here 

l A~fkl' h(~) Jhfe[Oijmk'  O < ' r ~ a  
Aijkl(X)=[Al~l,  = [hpe[Oijm k, a<~ r<~ b 

A 's" = AiSOijOkl + A~Oijmkm ! + mimjmkml,  s = f ,  p i#l 

AI /=  2--~(L0 + 21.t0)(~,/~ + 21.tp), Al p =  7A (~,0 + 21.t0)(k.t +IXp) 

1 
Af2 = - - ~  [(lf - ~,o ) (~,p + 21J.p ) + "fl(lf - ~'1, ) (J'to - I'tp )] 

1 
- -~A[(ll, - ~,o)(kf + l.tp) + (I + q)(/t" - ~'p) (l't0 - ~p )] 

(3.2) 

h / =  1 ~  [~'p + 21.tp + rl(I.t 0 - ~tt, )], hp = - 12A. t - o  (I-t0 _ I'tp) 

b 2 _ a 2 
11= b-------~ , A = ( ~ , p + 2 ~ p ) ( k f  + l . t o ) + ~ ( k f - ~ , p - ~ l . p ) ( l . l . o - ~ p  ) 

In these expressions tq = mim], ~o, lao, Lp, lap are the Lam6 constants of the materials of the matrix 
and the coating respectively, nf, k / a n d  If are the moduli of elasticity of the transversely isotropic fibre, 
and el and e 3 are its piezoelastic constants. These quantities can be expressed in the following way in 
terms of the usual double-index components of the tensors C~jkl and ~//fkl, most often encountered m 
the literature 

nf=C/33, kk=~(C ~ +C~), II=C~, e[=e f, e3f=ef 3 (3.3) 

The composite as a whole is transversely isotropic. The above formulae enable us to obtain the 
following expressions for the three effective electroelastic characteristics of the material, which will later 
be necessary for analysing wave propagation 

n* = ~'0 + 2IX0 + P(nA + ×If ) (3.4) 

e 3 = p(e a +×lAea),  13; = e  0 + p(e~ - ×(eA) 2) 
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× = 4ppiO (1 _ 4pplOka )-I 

k t = 2~l(kp - 9~o - go)A~' + 2(1 - rl)(ky - 9~o - go )A[ 

I A = 2rl(Ip - ~o)A[' + 2(I - ~)(If - ~.o)A f 

n A = "rl [~, p + 2gp - ~'0 - 2g0 + 2(~,p - ~,0)A~'] + 

+ (1-  n)tn: -Z.0 -2~t0 +( l :  - ~.0)AS] (3.5) 

e a = 2 ( l - r l ) e (a  f ,  e¢ = (1-rl)(e3 y + 2e[AY2) 

e~ = rl(e v - e0 ) + (1 - rl)(e f - e0) + 2(1 - ~)(e[ )2 hf 

p is the volume density of the fibres, and e0, ep and c3 are the permittivities of the matrix, the coating 
and the fibre in the direction of its axis o f  symmetry. Note that the simple linear model, based on a 
"mixture rule" [2], leads to the following effective electroelastic characteristics 

n(*t) = ~'o + 2l-to + P[TI(~'p + 2gp) - ~'o - 2go + 

+ (1 - r l ) (n / -Z ,  o -2go)] ,  e3(t) = PeY3 (3.6) 

e~(l) = E 0 + p [T l (£  p - g 0 )  + (1 - "q)(e3 / - e0)] 

The difference between these quantities and the corresponding effective constants, presented in (3.4), 
is proportional to the square of the difference between the electroelastic constants of the components. 
This difference is unimportant if the characteristics of the components differ only slightly, but if there 
is a large contrast in their properties the differences between the quantities (3.4) and (3.6) may be 
considerable. 

4. T H E  P R O P A G A T I O N  OF A L O N G I T U D I N A L  E L A S T I C  WAVE 
IN A M E D I U M  R E I N F O R C E D  WITH S H U N T E D  

P I E Z O E L E C T R I C  F I B R E S  

The equations of steady oscillations of such a composite, supplemented by the corollary of Amp~re's 
law in the long-wave approximation, can be written in the form 

div(c(x)) + co2p*(u(x)) = 0 (4.1) 

div(i o3(D(x))- [3* grad(q0(x))) = 0 

Here (ui(x)) is the amplitude value of the mean elastic displacement vector, ((p(x)) is the average 
potential of the electric field, co is the frequency, 13~ is the tensor of the effective electrical conductivities 
of the medium, and p* is its effective density 

p* = (1-xl)P0 + p[rlpp + (1-rl)pf] 

where P0, Pp and p/is the density of the matrix, the coating and the piezoelectric ceramics, respectively. 
Assuming that the electrical conductivity of the matrix and of the piezoelectric ceramic fibre are negligibly 
small compared with the electrical conductivity of the coating ~ = 13pSij, we have 

By using the governing relations for the composite 

IIc I - e *  
(J(x)) = L*(F(x)), L" = e. r e" 

we can write 
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~ j( C~uSt(uk (x)) + e~k3k (q~(x))) + p'CO2 <ul(x)) = 0 

• T *  • Oj (t toey~ t 0 t (u k (x)) - t oxjk~ k <(p(x)) - 13~k0 k (tp(x))) = 0 (4.2) 

We will seek a solution of this system in the form of plane waves, propagating along the reinforcement 
direction 

(ui(x)) = Umi eiqm'x, (q)(x)) = t~e iqra'x 

where q is the wave number• Substituting these expressions into (4•2) we obtain a system of algebraic 
equations in U and O, whence follows a dispersion relation, which can be written in the form [2] 

q2n*(co) = p*o 2, n*(co) = n'(to) + in'((o) 

~(o~) 2 ] n*8on 
n'(to) = n* 1 + 1 + (0rt) 2 J' n"(¢o) = 1 + (oyl;) 2 

e~ 2 E 3 ~ = "-7-~-, '~= 
n e3 pr#p 

Hence, the wave number q is complex 

q(to) = qR(ta) + i qt(co ) 

co = ~ t g ~ ;  v * ( t o ) = l l n * ( t a ) l s e c ~  
qR = v - - ~ '  qt v (co) 2 p 2 

Its real part defines the dispeision of the phase velocity u*(c0) while the imaginary part defines the 
frequency dependence of the attenuation factor, referred to unit length• In these expressions ~ is the 
phase delay angle, which is defined in terms of the loss tangent 

6cox 
tg ~ = 1 + (1 + 8)(ox) 2 

Hence we can obtain the maximum loss tangent 

(tg ~/)rnax 241 + 8 

Example. We will consider a numerical example for the following values of the electroelastic 
characteristics of the components [3] (the fibre is made of PZT-5A ceramics of diameter 30 lam with a 
copper coating 1 vtm thick in a polymer matrix) 

kf = 98.2; If = 75.2; nf = 1 i I GPa 
Y e 1 =-5.4; e{3= 15.8; ff3 =7.34; p=0.3 

Xp= 120; I.tp = 40 GPa, ep = 0.9x 10 -11, 13p = 6.2 x 10-5 (tim) -l, r I =0.06 
2q)=4.4, ~)= 1.8 GPa, e0=3.7x 10 -11 

The maximum loss tangent calculated for these values of the constants is 0.183 at a frequency of 
66 Hz. The value calculated using the simplified formulae (3•6) proposed in [2] is equal to 0.13. 
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